

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

Improved Dyscale with Heterogeneous Multi-Core Processors to Attain
Fairness Guarentees

K. Sindhu# and V. Shanmugapriya*

#Dept of Computer Science and Application, PGP college Of Arts and Science Namakkal.India.
* Asst. Prof, Dept of Computer Science and Application, PGP college Of Arts and Science, Namakkal, India.

Abstract- Currently, The upgradation of Multicore processors makes higher need in the big data

applications. The greater part of the chip processor makes utilization of high power with a specific end

goal to exhibit a high performance computing systems. With the investigation of the MapReduce

system, a novel improved Dyscale technique known as AdaScale framework is proposed. It is deployed

over the Hadoop framework system. The goal is to segment the jobs into small batches so as to give

better completion time. The jobs are executed both in moderate and quick core processors. In the

execution view, facebook dataset is utilized as contribution for the Hadoop cluster structures. The job

finish time is evaluated over the aggregate number of processors and the quantity of servers. The

results demonstrate the effectiveness of the framework.

Keywords: Multicore processors, Mapreduce framework, Hadoop clusters, AdaScale and Job
completion time.

I. Introduction

Due to the advancement in technologies and

its services, a colossal of data is rapidly formed.

The colossal of data may be the combination of

three sorts of data viz, structured data,

unstructured data and semi-structured data.

Each sort of data holds terabytes records of

user’s information that comprises sales data,

social media data, audio, images etc. The

diffusion of data and its causes creates an

immense potential over storage technologies.

The applications are designed in a way that

different patterns of the data can easily

accommodate the designed applications [1].

Being collected from various sources, the

structure of the data may be different. When

the data grows exponentially, a distributed

mechanism is required to understand the data.

However, they do not directly provide support

for querying the data. Growing datasets not

only need to be queried to enable real time

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

information collection and sharing, but also

need to undergo complex batch data analysis

operations to extract the best possible

knowledge [2].

 Several potential solutions were

developed to manipulate and retrieve the data

demanded by big data [3] . Though, it offers

better services in terms of scalability,

redundancy and data availability, the service

provided at the end users is imperfect. Data

locality is the main key performance in the big

data analytics. The volume of the data in the

analytics process is a prohibitive one. It is quite

applicable to the high performance computing

systems even in case of small transferring

speed data. Thus, a different approach is

preferred, where computation is moved to

where the data is [4]. The same approach of

exploring data locality was explored previously

in scientific workflows and in Data Grids.

 In the view of big data analytics, Map

reduce framework suits the big data

environment in order to process big datasets. It

also suggests fault tolerant framework. This

framework is widely adopted in commodity

machines. It combines with Hadoop that

concentrates on batch-oriented processing job

systems [5]. This kind of system belongs to the

group of ‘scale-out’ applications. When the

jobs are processed over several numbers of

nodes, then the job completion time is less

achieved. When multiple users share the same

Hadoop cluster, there are many interactive ad-

hoc queries and small MapReduce jobs that are

completion-time sensitive [6]. In addition, a

growing number of MapReduce applications

(e.g., personalized advertising, sentiment

analysis, spam detection) are deadline-driven;

hence they require completion time

guarantees.

 The paper is organized into five parts.

Section I describes the importance of big data

analytics in storage analysis. Section II portrays

the various techniques studied by other

researchers. Section III describes about the

proposed approach. The proposed approach is

then experimented and depicted in Section IV.

Atlast concluded in Section V.

II. Related Work

There is an assemblage of work investigating

power and performance exchange- offs

utilizing heterogeneous Multicore processors.

Some papers concentrate on the energy

utilization, as: Rakesh et al. [17], while others

concentrate on the analysis about the

performance of the energy utilization [18, 19].

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

Daniel et al. [20] proposed utilizing design

marks to guide the planning choices. The

proposed strategy needs to adjust the

applications for including the design marks, in

this manner it is definitely not viable to send.

These proposed methods center on enhancing

the general chip-level throughput. The work in

[11] investigates the per-program execution in

expansion to the general chip level throughput

when utilizing heterogeneous multi-core

processors.

 General endeavors for force and

execution exchange-offs concentrate on a

solitary machine while Hadoop is a distributed

structure and needs to deal with cluster

situation. It is hard to apply such conventional

methods for Hadoop. Here, we plan to bolster

distinctive execution targets for classes of

Hadoop occupations [11], which requires a

careful control of running diverse sorts of

spaces in diverse core, along these lines

dynamical mapping of strings to core

processors is not reasonable here.

 Load-adjusting and stack re-adjusting

approaches in a heterogeneous bunch is

utilized as a part of [12], [14] to permit the

quicker hub to get more information, such that

decrease assignments complete around in the

meantime. In [15] use information

arrangement to advance execution in

heterogeneous situations. Speedier hubs store

more information and along these lines run

more assignments without information

exchange. In [13] use disconnected from the

net profiling of the employments executions

with appreciation to various heterogeneous

hubs in the bunch what’s more, upgrade the

errand situation to enhance the occupation

consummation time.

 All the above endeavors concentrate on

the server level heterogeneity in Hadoop

group. On account of Hadoop sending on

heterogeneous servers, one needs to bargain

with information area and adjusting the

information arrangement as per the server

capacities. One of the greatest favorable

circumstances of Hadoop conveyed with

heterogeneous processors is that both quick

and moderate spaces have a comparative

access to the basic HDFS information that

disposes of information territory issues. The

present extended form of this paper gives a

more formal depiction of the AdaScale system

and presents a complete execution assessment

study.

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

III. Proposed Work

A. Problem Definition:

 In accord to provide better computing

experience, the modern system is designed on

a chip (SoC). These type of chips comprised of

heterogeneous core that utilizes the same

instruction set with good performance

characteristics. It is often enabled by energy

that restricts the number of cores utilized on a

chip. Different sorts of tasks possess different

processing time. In order to obtain better job

completion time, a fast core processor

machines are introduced. Therefore, the

advent of heterogeneous processors aid to

create better environment.

1.1 Improved Multicore processors using

Mapreduce scheduler – AdaScale :

 An improved Multicore processors

using Mapreduce scheduler is executed in five

steps:

a) Creation of virtual resource pools:

 The target of the Multicore processors

is to allocate and execute the job effectively

depending upon the objectives and resources

preferences. At the fast core processor, the

user can execute the process to the interactive

job queue. Thus, the user can easily recognize

the sorts of the job and schedule the job. And

also, the new jobs are allocated to the fast core

processors using CPU affinity. It acts as the one

of the bounds to the job type.

b) Maintenance of spare cluster resources:

 The allocated jobs are queued in

JobQueue. In case of static resource

partitioning, the resources are spared when

JobQueue is empty. The other jobs are

enqueued at the resource side. Then, a vShare

is introduced to lessen the spare resources at

the resource pool. The allocated space in the

vshare resource pool can be utilized by any

JobQueue. The use of task migration schemes

enables to obtain optimal resources. The jobs

are fragmented into several batches. Each

batch is compiled at the interactive job queue.

c) Trace generator:

 With the assistance of trace generator,

a reloadable MapReduce workload is

generated and analyzed. When the jobs are

executed in the fast processor, the traces are

generated. It allows examining the sensitivity

analysis of the new schedulers based on the

type of workload. Then, a simulator engine is

placed in the Hadoop cluster to monitor the

jobs.

d) Hadoop scheduler process:

 The Hadoop scheduler process consists

of FIFO scheduler, Capacity and Elasticity. FIFO

works on the arrival of the data and based on

that job is scheduled. Capacity refers to the

queries for different types of jobs. Each query

is divided into different slots is known as query

capacity. The scheduler can be flexible to all

the resources to achieve better resource

utilization.

Fig.1. Proposed workflow

http://www.ijarcset.com/index.php

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

IV. Experimental Designs

In this section, we present the performance

analysis of “Improved Multicore processors

using MapReduce schedulers. The input taken

is the facebook dataset. The target is to find

the amount of time consumed for completing

the jobs.

Fig.2. Initializing the Hadoop clusters

Fig.3. Loading the facebook dataset over the

Hadoop cluster

Fig.4 . Initializing the Mapreduce framework

Fig.5. Segmenting the data using MapReduce

framework

Fig.6. Encountering the job completion time

http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

Fig.7. Output obtained from MapReduce.

Fig. 8. Time taken by the jobs completion is

estimated via bar graph.

Fig.9. Job scheduling performs over the

available servers is estimated via line graph.

V. Conclusion
In this project, we study about the advent

of Multicore processors using Mapreduce

framework. A novel framework named,

AdaScale is proposed. This framework resides

over the top of the Hadoop clusters. Firstly, the

jobs are scheduled in multi-class division. The

AdaScale, contain some virtual resources pools,

that automatically loads the data over Hadoop

framework. Several virtual clusters are created

and the jobs are scheduled in a distributed

approach. To analyse the performance of the

framework, facebook dataset is utilized. The

data from dataset is loaded, clustered using

MapReduce approach and the job completion

time is estimated.

VI. References

[1] T. White, Hadoop:The Definitive Guide. Yahoo Press.
[2] F. Ahmad et al., “Tarazu: Optimizing MapReduce on

Heteroge-neous Clusters,” in Proceedings of
ASPLOS, 2012.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified
data process-ing on large clusters,” Communications
of the ACM, vol. 51, no. 1, 2008.

[4] M. Zaharia et al., “Delay scheduling: A simple
technique for achieving locality and fairness in
cluster scheduling,” in Proceed-ings of EuroSys,
2010.

[5] Apache, “Capacity Scheduler Guide,” 2010. *Online+.
Available:
http://hadoop.apache.org/common/docs/r0.20.1/
capacity scheduler.html

[6] Z. Zhang, L. Cherkasova, and B. T. Loo,
“Benchmarking approach for designing a
MapReduce performance model,” in ICPE, 2013, pp.
253–258.

http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php
http://www.ijarcset.com/index.php

ISSN 2454-9924 Volume: 7 Issue: 3(2016)

[7] S. Rao et al., “Sailfish: A Framework For Large Scale
Data Pro-cessing,” in Proceedings of SOCC, 2012.

[8] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S.
Narayanam, C. Olston, B. Reed, S. Srinivasan, and U.
Srivastava, “Building a high level dataflow system on
top of MapReduce: The pig experience,” PVLDB, vol.
2, no. 2, pp. 1414–1425, 2009.

[9] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA:
Automatic Resource Inference and Allocation for
MapReduce Envi-ronments,” in Proc. of ICAC, 2011.

[10] “Play It Again, SimMR!” in Proceedings of Intl. IEEE
Clus-ter’2011.

[11] S. Ren, Y. He, S. Elnikety, and S. McKinley,
“Exploiting Processor Heterogeneity in Interactive
Services,” in Proceedings of ICAC, 2013.

[12] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn,
and K. S. McKinley, “Looking back and looking
forward: power, perfor-mance, and upheaval,”
Commun. ACM, vol. 55, no. 7, 2012.

[13] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural
implications.” in Technical Report TR-811-08,
Princeton University, 2008.

[14] “PassMark Software. CPU Benchmarks,” 2013.
[Online]. Available:
http://www.cpubenchmark.net/cpu.php?cpu=Intel+
Xeon+E3-1240+%40+3.30GHz

[15] F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni,
“Optimizing power and performance trade-offs of
mapreduce job processing with heterogeneous

multi-core processors,” in Proc. of the IEEE 7th
International Conference on Cloud Computing
(Cloud’2014), June, 2014.

[16] A. Verma et al., “Deadline-based workload
management for mapreduce environments: Pieces
of the performance puzzle,” in Proc. of IEEE/IFIP
NOMS, 2012.

[17] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas, “Single-isa heterogeneous
multi-core architectures for multithreaded workload
performance,” in ACM SIGARCH Computer
Architecture News, vol. 32, no. 2, 2004.

[18] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer, “Scheduling heterogeneous multi-cores
through performance im-pact estimation (pie),” in
Proceedings of the 39th International Symposium
on Computer Architecture, 2012.

[19] M. Becchi and P. Crowley, “Dynamic thread
assignment on het-erogeneous multiprocessor
architectures,” in Proceedings of the 3rd conference
on Computing frontiers, 2006.

[20] D. Shelepov and A. Fedorova, “Scheduling on
heterogeneous multicore processors using
architectural signatures,” in Proceed-ings of the
Workshop on the Interaction between Operating
Systems and Computer Architecture, 2008.

